Références

Barrow, M. J. \& Mills, O. S. (1971). Chem. Commun. pp. 119-120.
Barrow, M. J., Mills, O. S. \& Filippini, G. (1973). Chem. Commun. pp. 66-67.
Busing, W. R., Martin, K. O., Levy, H. A., Ellison, R. D., Hamilton. W. C., Ibers, J. A., Johnson, C. K. \& Thiessen. W. E. (1971). ORXFLS 3, Oak Ridge National Laboratory, Tennessee.
Dusausoy, Y., Protas, J. \& Guilard, R. (1973a). Acta Cryst. B29, 477-488.
Dusausoy, Y., Protas, J. \& Guilard, R. (1973b). Acta Cryst. B29, 726-730.
El Borai, M., Guilard, R. \& Fournari, P. (1974). Bull. Soc. Chim. Fr. pp. 1383-1388.

El Boral, M., Guilard, R., Fournari, P., Dusausoy, Y. \& Protas, J. (1977). Bull. Soc. Chim. Fr. pp. 75-82.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Guilard, R. \& Fournari, P. (1971). Bull. Soc. Chim. Fr. pp. 1437-1454.
Gullard, R., Tirouflet, J. \& Fournari, P. (1971). J. Organomet. Chem. 33, 195-213.
Hata, T., Shimanouchi, J. \& Sasada, Y. (1969). Tetrahedron Lett. pp. 753-754.
ibata, K., Hata, T., Shimanouchi, H. \& Sasada, Y. (1972). Chem. Commun. pp. 339-340.

Pauson, P. L. \& Todd, K. H. (1970). J. Chem. Soc. C, pp. 2315-2318.
Shimanouchi, H., Hata, T. \& Sasada, Y. (1968). Tetrahedron Lett. p. 3573.

Acta Cryst. (1978). B34, 1716-1718

\{2-4:6-7- η-(8-Acetylbicyclo[3.2.1]octadienylium)\}tricarbonyliron Hexafluorophosphate

By A. Valentina Rivera and George M. Sheldrick
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 9 January 1978; accepted 21 January 1978)

Abstract

C}_{10} \mathrm{H}_{11} \mathrm{O}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}\), monoclinic, $P 2_{1} / c, a=8.052$ (4), $b=14.419$ (4), $c=14.980$ (4) $\AA, \beta=114.43(6)^{\circ}, U=1583.5 \AA^{3}, Z=4, D_{x}=$ $1.812 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K x)=10.6 \mathrm{~cm}^{-1}$. The structure was solved by direct methods and refined to an R of 0.047 for 1207 unique diffractometer data. A bicyclo[3.2.1] octadienylium ligand is found in contrast to the originally proposed [5.1.0] structure. The acetyl group is endo to the localized double bond, and the PF_{6}^{-}anion is disordered.

Introduction. Johnson, Lewis \& Randall (1971) showed that tricarbonyl(cyclooctatetraene)iron (I a) reacts with acetyl chloride under Friedel-Crafts conditions to produce the cation $\left[\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{COCH}_{3} \mathrm{Fe}(\mathrm{CO})_{3}\right]^{+}$together with a little (I b). They proposed structure (II b) for the cation by analogy with the protonation of (I a) which gives (II a) (Davison, McFarlane, Pratt \& Wilkinson, 1962; Brookhart \& Davis, 1971). Further chemical and spectroscopic evidence indicated the bicyclo[3.2.1] structure (III), confirmed by this analysis; this evidence and preliminary details of the crystal structure have been given by Charles, Diversi, Johnson, Karlin, Lewis, Rivera \& Sheldrick (1977).

(Ia) $R=\mathrm{H}$
(Ib) $R=\mathrm{COCH}_{3}$

(IIa) $R=\mathrm{H}$ (IIb) $R=\mathrm{COCH}_{3}$

(III) $R=\mathrm{COCH}_{3}$

Intensities were measured with a Stoe STADI-2 twocircle diffractometer, graphite-monochromated Mo $K \alpha$ radiation, and two crystals, $0.27 \times 0.27 \times 0.23 \mathrm{~mm}$ and $0.19 \times 0.23 \times 0.23 \mathrm{~mm}$, mounted about $[010]$ and [001] respectively. 3398 reflexions were measured, Lp corrections were applied but no absorption corrections were made; interlayer scale factors were derived by linear least squares from common reflexions. Equivalent reflexions were then averaged to give 1207 unique reflexions with $F>4 \sigma(F)$ based on counting statistics. Cell dimensions were obtained by a least-squares fit to 585 diffractometer ω medians for reflexions in both zero layers. The Fe and P atoms were located by multisolution \sum_{2} sign expansion, and the remaining atoms from difference syntheses. The structure was refined by

Table 1. Atom coordinates ($\times 10^{4}$) and isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	U
Fe	3620 (1)	-189 (1)	7305 (1)	
C(1)	5767 (9)	1234 (5)	8469 (5)	
C(2)	5191 (12)	1051 (6)	7395 (6)	
C(3)	5922 (11)	289 (8)	7129 (6)	
C(4)	6550 (12)	-450 (7)	7791 (7)	
C(5)	7076 (10)	-242 (6)	8860 (6)	
C(6)	5257 (9)	-255 (6)	8922 (5)	
C(7)	4489 (10)	594 (5)	8706 (5)	
C(8)	7600 (10)	776 (5)	9072 (5)	
C(9)	8312 (9)	1004 (6)	10162 (6)	
C(10)	8764 (12)	1999 (6)	10455 (7)	
C(11)	2736 (11)	-441 (5)	6008 (6)	
C(12)	3034 (11)	-1358 (7)	7522 (5)	
C(13)	1512 (12)	388 (6)	7095 (5)	
O(9)	8460 (7)	410 (4)	10751 (4)	
O(11)	2151 (10)	-627(4)	5204 (5)	
$\mathrm{O}(12)$	2688 (9)	-2097 (4)	7629 (4)	
O(13)	197 (9)	763 (5)	6979 (4)	
P	2598 (3)	1988 (1)	4416 (2)	
F(1)	1080 (8)	1323 (4)	3751 (5)	
F(2)	4178 (8)	2662 (4)	5044 (4)	
F(3)	2163 (10)	1772 (5)	5308 (5)	
F(4)	3062 (10)	2196 (4)	3518 (4)	
F(5)	3980 (11)	1169 (4)	4735 (5)	
F(6)	1249 (11)	2824 (5)	4126 (6)	
$\mathrm{F}\left(1^{\prime}\right)$	843 (32)	1632 (22)	4493 (31)	42 (15)
F(2')	4349 (33)	2343 (25)	4342 (33)	151 (35)
F(3')	3357 (53)	2306 (28)	5502 (11)	197 (51)
F(4')	1833 (50)	1673 (27)	3333 (11)	76 (19)
$\mathrm{F}\left(5^{\prime}\right)$	3497 (46)	1025 (13)	4748 (28)	119 (43)
F(6)	1687 (44)	2952 (12)	4088 (26)	28 (14)

Table 2. H atom coordinates $\left(\times 10^{3}\right)$ and isotropic temperature factors ($\AA^{2} \times 10^{2}$)

	x	y	z	U
	$x(1)$	$192(4)$	$860(4)$	$5(2)$
$\mathrm{H}(1)$	$562(8)$	$152(4)$	$693(4)$	$5(2)$
$\mathrm{H}(2)$	$467(8)$	$152(5)$	$641(5)$	$7(2)$
$\mathrm{H}(3)$	$573(9)$	$18(6)$		
$\mathrm{H}(4)$	$704(11)$	$-98(6)$	$764(6)$	$10(3)$
$\mathrm{H}(5)$	$785(8)$	$-71(4)$	$924(4)$	$4(2)$
$\mathrm{H}(6)$	$481(8)$	$-76(5)$	$919(4)$	$5(2)$
$\mathrm{H}(7)$	$339(10)$	$81(4)$	$882(4)$	$6(2)$
$\mathrm{H}(8)$	$846(8)$	$97(4)$	$886(4)$	$3(2)$
$\mathrm{H}(101)$	$936(7)$	$235(5)$	$1002(4)$	$12(3)$
$\mathrm{H}(102)$	$748(5)$	$232(5)$	$1034(4)$	$15(4)$
$\mathrm{H}(103)$	$968(6)$	$203(5)$	$1122(1)$	$11(3)$

blocked least squares with complex neutral-atom scattering factors and the weighting scheme $w=\left[\sigma^{2}(F)\right.$ $+0.005 F^{2} \mathrm{j}^{-1}$. It was found necessary to refine two PF_{6}^{-}groups, with site-occupation factors of k and $1-k$ respectively, constrained to be regular octahedra with the P atom as the common centre and $\mathrm{P}-\mathrm{F} 1.550$ (10), $\mathrm{F} \cdots \mathrm{F} 2 \cdot 192$ (14) $\AA ; k$ refined to 0.9 . The H atoms were refined freely, except those of the methyl group, which were constrained to lie 1.08 (1) \AA from $\mathrm{C}(10)$

Table 3. Bond lengths (\AA)

$\mathrm{C}(2)-\mathrm{Fe}$	$2.162(11)$	$\mathrm{C}(3)-\mathrm{Fe}$	$2.094(12)$
$\mathrm{C}(4)-\mathrm{Fe}$	$2.195(11)$	$\mathrm{C}(6)-\mathrm{Fe}$	$2.230(8)$
$\mathrm{C}(7)-\mathrm{Fe}$	$2.226(9)$	$\mathrm{C}(11)-\mathrm{Fe}$	$1.808(11)$
$\mathrm{C}(2)-\mathrm{Fe}$	$1.816(12)$	$\mathrm{C}(13)-\mathrm{Fe}$	$1.797(12)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.503(13)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$1.530(14)$
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.526(12)$	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.380(16)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.400(15)$	$\mathrm{C}(5)-\mathrm{C}(4)$	$1.508(14)$
$\mathrm{C}(6)-\mathrm{C}(5)$	$1.505(14)$	$\mathrm{C}(8)-\mathrm{C}(5)$	$1.525(13)$
$\mathrm{C}(7)-\mathrm{C}(6)$	$1.349(12)$	$\mathrm{C}(9)-\mathrm{C}(8)$	$1.526(13)$
$\mathrm{O}(9)-\mathrm{C}(9)$	$1.198(11)$	$\mathrm{C}(10)-\mathrm{C}(9)$	$1.501(13)$
$\mathrm{O}(11)-\mathrm{C}(11)$	$1.129(11)$	$\mathrm{O}(12)-\mathrm{C}(12)$	$1.129(13)$

Table 4. Bond lengths involving $\mathbf{H}(\AA)$

$\mathrm{H}(1)-\mathrm{C}(1)$	$1.02(6)$	$\mathrm{H}(2)-\mathrm{C}(2)$	$0.94(6)$
$\mathrm{H}(3)-\mathrm{C}(3)$	$1.03(8)$	$\mathrm{H}(4)-\mathrm{C}(4)$	$0.93(9)$
$\mathrm{H}(5)-\mathrm{C}(5)$	$0.94(6)$	$\mathrm{H}(6)-\mathrm{C}(6)$	$0.97(7)$
$\mathrm{H}(7)-\mathrm{C}(7)$	$1.01(8)$	$\mathrm{H}(8)-\mathrm{C}(8)$	$0.92(7)$

Table 5. Selected bond angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.0 (8)	$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(4)$	66.4 (5)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	108.5 (8)	$\mathrm{C}(6)-\mathrm{Fe}-\mathrm{C}(7)$	35.2 (3)
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(5)$	$100 \cdot 2$ (6)	$\mathrm{C}(11)-\mathrm{Fe}-\mathrm{C}(12)$	89.5 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.3 (10)	$\mathrm{C}(11)-\mathrm{Fe}-\mathrm{C}(13)$	89.0 (5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	101.7 (7)	$\mathrm{C}(12)-\mathrm{Fe}-\mathrm{C}(13)$	99.5 (5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	$110 \cdot 6$ (8)	$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(11)$	84.6 (5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	117.5 (10)	$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{Fe}$	$177 \cdot 4$ (8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	102.1 (7)	$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{Fe}$	177.2 (9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	110.2 (8)	$\mathrm{O}(13)-\mathrm{C}(13)-\mathrm{Fe}$	178.6 (7)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	101.0 (8)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(9)$	120.8 (8)
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	112.6 (8)	$\mathrm{O}(9)-\mathrm{C}(9)-\mathrm{C}(10)$	122.0 (9)
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(9)$	112.3 (8)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	117.2 (8)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(8)$	100.4		

and 1.76 (1) \AA from each other. Anisotropic temperature factors were employed for all atoms except for the H atoms and the F atoms of the minor PF_{6}^{-} contributor, which were given individual isotropic temperature factors. The refinement converged to $R^{\prime}=$ $\sum w^{1 / 2} \Delta / \sum w^{1 / 2} F_{o}=0.046$, and $R=0.047$. Final positional and isotropic thermal parameters are given in Tables 1 and 2, bond lengths and angles in Tables 3-5.*

Discussion. The cation geometry (Fig. 1) is similar to that found in (bicyclo[3.2.1]octadienyl)tricarbonyliron tetrafluoroborate (Margulis, Schiff \& Rosenblum, 1965). The $\mathrm{C}-\mathrm{C}$ lengths and H atom positions are

[^0]

Fig. 1. The $\left\lfloor\left.\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right|^{+}\right.$cation, showing the atom labelling.
consistent with a π-allyl interaction between Fe and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$, and a π-alkene interaction between Fe and $\mathrm{C}(6)-\mathrm{C}(7)$. There is no evidence to support further delocalization in the C_{7} ring, as proposed by Margulis, Schiff \& Rosenblum (1965). Although C(1), $\mathrm{C}(7), \mathrm{C}(6)$ and $\mathrm{C}(5)$ are coplanar to within $0.004 \AA$, $\mathrm{C}(1)$ and $\mathrm{C}(5)$ lie 0.55 and $0.53 \AA$ respectively above the plane defined by $\mathrm{C}(2), \mathrm{C}(3)$ and $\mathrm{C}(4)$. The acetyl group is endo to the localized double bond $[\mathrm{C}(6)-$ $C(7)]$, with a dihedral angle $C(5)-C(8)-C(9)-O(9)$ of
$2 \cdot 1^{\circ}$. Except for the acetyl group, the cation possesses approximate mirror symmetry through $\mathrm{C}(3), \mathrm{C}(8), \mathrm{Fe}$, $\mathrm{C}(11)$ and $\mathrm{O}(11)$. The valence angles at Fe are consistent with this mirror plane but indicate appreciable distortion from local $C_{3 \mathrm{v}}$ symmetry for the $\mathrm{Fe}(\mathrm{CO})_{3}$ group; however, there are no significant variations in $\mathrm{Fe}-\mathrm{C}$ (mean 1-807) or $\mathrm{C}-\mathrm{O}$ (mean $1 \cdot 132 \AA$) lengths within this group. The $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ units are almost linear, with a mean angle of 177.7°.

We thank Drs A. D. Charles, P. Diversi and K. Karlin for providing the crystals, the Universidad de Los Andes for a Fellowship to AVR, and the Science Research Council for the diffractometer. Calculations were performed on the Cambridge University IBM $370 / 165$ computer with programs written by GMS.

References

Brookhart, M. \& Davis, E. R. (1971). Tetrahedron Lett. pp. 4349-4352.
Charles, A. D., Diversi, P., Johnson, B. F. G., Karlin, K., Lewis, J., Rivera, A. V. \& Sheldrick, G. M. (1977). J. Organomet. Chem. 128, C31-C34.

Davison, A., McFarlane, W., Pratt, L. \& Wilkinson, G. (1962). J. Chem. Soc. pp. 4821-4829.

Johnson, B. F. G., Lewis, J. \& Randall, G. L. P. (1971). J. Chem. Soc. A, pp. 422-429.

Margulis, T. N., Schiff, L. \& Rosenblum, M. (1965). J. Am. Chem. Soc. 87, 3269-3270.

Bis(triphenylphosphine)iminium μ-Hydrido-decacarbonyltriosmium- μ-carboxylaioheptadecacarbonylhexaosmate, $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]^{+}\left[\mathrm{HOs}_{3}(\mathrm{CO})_{10} . \mathrm{O}_{2} \mathrm{C} . \mathrm{Os}_{6}(\mathrm{CO})_{17}\right]^{-}$

By John J. Guy and George M. Sheldrick
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 9 January 1978; accepted 21 January 1978)

Abstract

C}_{64} \mathrm{H}_{31} \mathrm{NO}_{29} \mathrm{P}_{2} \mathrm{Os}_{9}\), monoclinic, $P 2_{1} / c, a=$ 18.75 (1), $b=15.20$ (1), $c=28.41$ (1) $\AA, \beta=$ $114.5(1)^{\circ}, U=7368 \AA^{3}, Z=4, D_{x}=2.751 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was refined to an R of 0.076 for 3274 unique diffractometer data. The complex anion consists of Os_{3} and Os_{6} units linked by a CO_{2} bridge.

Introduction. The anion was prepared from $\mathrm{Os}_{6}(\mathrm{CO})_{18}$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{H}\right]^{-}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and isolated as the $\left[\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{~N}\right]^{+}\right.$salt (Eady, Guy, Johnson, Lewis, Malatesta \& Sheldrick, 1976). The crystal structure

determination reveals not an Os_{9} cluster as intended, but Os_{3} and Os_{6} clusters linked by a novel CO_{2} bridge.

Dark-brown crystals were obtained by slow diffusion of cyclohexane into a solution in dichloromethane. Intensities were measured with a Syntex $P 2$, four-circle diffractometer, graphite-monochromated Mo Ka radiation, and a crystal $0.28 \times 0.11 \times 0.09 \mathrm{~mm} .5014$ reflexions ($1 \leq 2 \theta \leq 55^{\circ}$) were measured and corrected for absorption ($\mu=150 \mathrm{~cm}^{-1}$); the 3274 data with $F>$ $4 \sigma(F)$ were employed for structure refinement. The nine Os atoms were found by multisolution \sum_{2} sign

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33347 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, England.

